Select Page

China Standard Factory Radial Non-Aligning Ceiling Fan Hch Ball Bearings Price Motorcycle Parts Tapered Roller Bearing bearing driver

Product Description

Product Description

Bearing No. Shape Dimension Basic load Rating
KN
Max Speed
rpm
Mass
Bore
d
Outer Diameter
D
Width
B
Radius r min Dynamic Static Grease Oil
mm mm mm mm Cr Cor  Kg
6000 Series
606 6 17 6 0.3 1.95 0.72 30000 38000 0.0057
607 7 19 6 0.3 2.88 1.08 28000 36000 0.0071
608 8 22 7 0.3 3.32 1.38 26000 34000 0.011
609 9 24 7 0.3 3.35 1.4 22000 30000 0.014
6000 10 26 8 0.3 4.58 1.98 20000 28000 0.018
6001 12 28 8 0.3 5.1 2.38 19000 26000 0.02
6002 15 32 9 0.3 5.58 2.85 18000 24000 0.026
6003 17 35 10 0.3 6 3.25 17000 22000 0.036
6004 20 42 12 0.6 9.38 5.02 15000 19000 0.069
6005 25 47 12 0.6 10.1 5.85 13000 17000 0.075
6006 30 55 13 1 10.18 6.91 10000 14000 0.116
6007 35 62 14 1 12.47 8.66 9000 12000 0.155
6008 40 68 15 1 13.1 9.45 8500 11000 0.185
6009 45 75 16 1 16.22 11.96 8000 10000 0.231
6571 50 80 16 1 16.94 12.95 7000 9000 0.25
6011 55 90 18 1.1 23.28 17.86 7000 8500 0.362
6012 60 95 18 1.1 24.35 19.35 6300 7500 0.385
6013 65 100 18 1.1 24.66 19.74 6000 7000 0.41
6014 70 110 20 1.1 29.68 24.2 5600 6700 0.575
6015 75 115 20 1.1 30.91 26.06 5300 6300 0.603
6016 80 125 22 1.1 36.57 31.36 5000 6000 0.821
6017 85 130 22 1.1 39.04 33.75 4500 5600 0.848
6018 90 140 24 1.5 44.63 39.16 4300 5300 1.1

WHY CHOOSE E-ASIA BEARING

1) 20 years of rich bearing industry export experience
2) ISO & MPA & CE & SGS & BV certified
3) Professional engineers team and Superior machines
4) 1 hour to HangZhou port or ZheJiang port
5) Strict quality inspection (3 steps) before shipment, such as SGS/BV third party certified.

We are  one of the most influential bearing suppliers and professional sales.  Our products categories mainly include: Auto bearing , Deep Groove Ball Bearings, Cylindrical Roller Bearings, Tapered Roller Bearings, Thrust Ball Bearings, Self-aligning Ball Bearings, Angular Contact Ball Bearings, Spherical Roller Bearings, Needle Bearings, linear Bearings, Pillow Block Bearings, the Ceramic Bearings, Joint Bearings, Slewing Bearings, Cam Followers Bearings and Electronic Bearings etc.

About the market of our products, except for our domestic market, our products meet to countries all over the world, such as Asia, Africa, South America, Europe, Middle east and etc. Because of the high quality level and good services, are accepted by all clients

Our company offers more than 25,000 different kinds of bearing. In addition, we can supply from stock and have enough stock  bearings ready for clients.

We are engaged in exporting brand bearings for many years, such as CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearings, CZPT bearing, and CZPT bearings. Also we are an agency of UBC bearings, GMN bearings and HangZhou CZPT bearings, HangZhou CZPT bearings, HangZhou HRB bearings.

 

 

High quality and long life bearings are the aim of  IKC Bearings, creatibg the naximum value for customers,our company is pushing forward moden managerment in full aspects and builds up own bearing brand “PLETON”,and will make in known at home and abroad.We will try our best to provide customers with excellent products and services,and are wishing to sincerely cooperate with customers from home and  abroad to achieve win-win.

 

1)Series: 6000 series, 6200 series, 6300 series and 6400 series,

2)Corresponding types: 605-6032, 625-6248, 6300-6344, 6403-6418

3)Material Used: GCr15-China, (AISI)52100-American, (Din)100Cr6-Germany,

4)Shield/closure: open bearing, Z, ZZ, RS,2RS,

5)Snap ring: N, NR

6)Vibration and noise level: Z1, Z2, Z3

7)Precision level: P0, P6, P5(ABEC-1, ABEC-3,ABEC-5

 

6000-2RS1/C3—-6040/C3     6000-2Z/C3—-6040/C3

 

6200-2RS1/C3—-6244/C3     6200-2Z/C3—-6244/C3

 

6300-2RS1/C3—-6344/C3     6300-2Z/C3—-6344/C3

 

6403-2RS1/C3—-6430/C3     6304-2Z/C3—-6430/C3 

Other bearings:

(1)Deep Groove Ball Bearing 6000 ,6200,6300,6900 series ( steel cage, brass cage ,     nylon cage)

 

 

(2)Spherical Roller Bearing 22200 22300 23000 24000 series ( steel cage CC, brass     cage, CA and MB)

 

(3)Pillow Block Bearing,UC UCP UCT UCF UCFL SBPFL series

 

(4)Taper Roller Bearing (single row, double row and four row )

 

(5)Cylindrical Roller Bearing ( steel cage, brass cage ,nylon cage)

 

(6)Thrust Ball Bearing ( steel cage, brass cage)

 

(7)Thrust Roller Bearing( steel cage, brass cage)

 

Company Profile

Packaging & Shipping

FAQ

1.What is the minimum order quantity for this product?
Can be negotiated, we will try our best to meet customer needs.Our company is mainly based on wholesale sales, most customers’orders are more than 1 ton.

2.What is your latest delivery time?
Most orders will be shipped within 3-5 days of payment being received.

3.Does your company have quality assurance?
Yes, for 2 years.

4.What is the competitiveness of your company’s products compared to other companies?
High precision, high speed, low noise.

5.What are the advantages of your company’s services compared to other companies?
Answer questions online 24 hours a day, reply in a timely manner, and provide various documents required by customers for customs clearance or sales. 100% after-sales service.

6.Which payment method does your company support?
Do our best to meet customer needs, negotiable.

7.How to contact us quickly?
Please send us an inquiry or message and leave your other contact information, such as phone number, account or account, we will contact you as soon as possible and provide the detailed information you need.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 15°
Aligning: Non-Aligning Bearing
Separated: Unseparated
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

radial bearing

Can you describe the load-carrying capacity and load ratings of radial bearings?

The load-carrying capacity and load ratings of radial bearings are crucial factors to consider when selecting and designing bearing systems for industrial applications. Here is a detailed description of these aspects:

Load-Carrying Capacity:

The load-carrying capacity of a radial bearing refers to its ability to support and distribute loads without excessive deformation or failure. It is a measure of the maximum load that a bearing can handle under specific operating conditions. The load-carrying capacity is influenced by several factors, including the bearing size, design, material, lubrication, operating speed, and temperature.

Radial bearings are designed to primarily support radial loads, which are forces acting perpendicular to the shaft’s axis. These loads can include the weight of rotating components, belt tension, pulley forces, or other radial forces. The load-carrying capacity of a radial bearing is specified for radial loads and is typically provided by the manufacturer in terms of dynamic load rating and static load rating.

Dynamic Load Rating:

The dynamic load rating of a radial bearing indicates the maximum radial load that the bearing can withstand under ideal operating conditions, with a calculated 90% reliability over a specified number of revolutions or operating hours. It represents the load at which the bearing is expected to have a basic rating life of one million revolutions.

The dynamic load rating takes into account factors such as the bearing’s geometry, material properties, and internal design, which affect its ability to distribute the load and resist fatigue failure. It is expressed in units of force (often in Newtons or pounds) and is provided by the bearing manufacturer. When selecting a radial bearing, it is crucial to ensure that the anticipated radial load falls within the dynamic load rating to prevent premature bearing failure.

Static Load Rating:

The static load rating of a radial bearing refers to the maximum radial load that the bearing can withstand without permanent deformation or damage while stationary. Unlike the dynamic load rating, the static load rating does not account for the bearing’s ability to handle fatigue-related failures over a specified number of revolutions but focuses on the load capacity under static conditions.

The static load rating is typically higher than the dynamic load rating due to the absence of rotational forces and associated fatigue effects. It provides an indication of the bearing’s ability to support heavy loads without undergoing permanent deformation. Like the dynamic load rating, the static load rating is expressed in units of force and is provided by the bearing manufacturer. It is crucial to ensure that the static load rating exceeds the anticipated radial load to prevent bearing damage or failure.

Load Rating Calculation:

The load ratings of radial bearings are determined through standardized calculation methods based on industry standards, such as ISO and ANSI/ABMA standards. These calculations consider factors such as the bearing’s geometry, material properties, internal design, and expected operating conditions.

The load ratings are influenced by various factors, including the number and size of the rolling elements, the contact angle, the material strength, and the bearing’s internal clearance. Manufacturers perform extensive testing and analysis to determine the load ratings of their radial bearings and provide the values in their product catalogs to assist engineers and designers in selecting the appropriate bearing for specific applications.

In summary, the load-carrying capacity and load ratings of radial bearings play a critical role in determining their suitability for various industrial applications. The dynamic load rating indicates the maximum radial load that a bearing can handle under ideal operating conditions and a specified reliability level, while the static load rating represents the maximum radial load the bearing can withstand without permanent deformation while stationary. Understanding these load ratings is essential for selecting radial bearings that can reliably and safely support the anticipated loads in industrial machinery and equipment.

radial bearing

Can you explain the maintenance and installation considerations for radial bearings?

Maintenance and installation considerations are crucial for ensuring the optimal performance and longevity of radial bearings. Proper installation and regular maintenance practices help prevent premature bearing failure, minimize downtime, and maximize the efficiency of the bearing system. Here’s a detailed explanation of the maintenance and installation considerations for radial bearings:

1. Proper Handling and Storage:

Radial bearings should be handled with care to avoid damage to the bearing surfaces. They should be stored in a clean and dry environment, protected from contaminants, moisture, and extreme temperature conditions. When handling the bearings, clean hands or gloves should be used to prevent introducing dirt or grease to the bearing surfaces.

2. Correct Bearing Selection:

Proper bearing selection is essential for ensuring optimal performance and reliability. Factors such as load requirements, speed, temperature, and environmental conditions should be considered when choosing the appropriate radial bearing. Consulting bearing manufacturers or industry experts can assist in selecting the right bearing type, size, and design for the specific application.

3. Precise Shaft and Housing Preparation:

Prior to installation, the shaft and housing surfaces should be carefully inspected and prepared. They should be clean, smooth, and free from burrs, nicks, or other defects that could adversely affect the performance of the bearing. Proper shaft and housing preparation ensures proper fit, alignment, and load distribution, reducing the risk of premature wear or failure.

4. Correct Bearing Mounting:

During installation, proper mounting techniques should be followed to ensure the correct fit and alignment of the radial bearing. The bearing should be mounted using the appropriate tools and equipment, applying even and controlled force to avoid excessive load or damage to the bearing components. The manufacturer’s guidelines and recommendations should be followed for the specific bearing type and size.

5. Lubrication:

Proper lubrication is crucial for the performance and longevity of radial bearings. The correct type and quantity of lubricant should be used based on the manufacturer’s recommendations. Lubrication intervals should be followed, and contamination should be prevented by using clean lubricants and appropriate sealing solutions. Regular monitoring of lubrication conditions and timely replenishment or replacement of lubricants are essential maintenance practices for radial bearings.

6. Regular Inspection and Maintenance:

Regular inspection and maintenance help detect and address any potential issues before they escalate into major problems. Periodic inspections should be conducted to check for signs of wear, damage, or abnormal operating conditions. This may include monitoring vibration, temperature, noise levels, and visual examination of the bearing and surrounding components. Any identified issues should be addressed promptly through appropriate maintenance procedures, such as re-lubrication, re-alignment, or replacement of damaged components.

7. Training and Expertise:

Proper maintenance and installation of radial bearings require knowledge and expertise. It is beneficial to have trained personnel who understand the specific requirements and procedures for handling, installing, and maintaining radial bearings. Training programs or consulting services provided by bearing manufacturers or industry experts can help ensure that maintenance and installation practices are carried out correctly and effectively.

8. Documentation and Record-Keeping:

Maintaining accurate documentation and records of bearing installation, maintenance activities, and relevant operating conditions is essential. This information can help track the history of the bearings, identify recurring issues, and facilitate troubleshooting or future maintenance planning. It is important to record important details such as bearing type, size, lubrication specifications, maintenance dates, and any observations or actions taken during inspections.

By considering these maintenance and installation considerations, it is possible to optimize the performance, reliability, and lifespan of radial bearings. Proper handling, correct bearing selection, precise shaft and housing preparation, accurate mounting, appropriate lubrication, regular inspection and maintenance, training, and documentation are key elements in achieving efficient and trouble-free operation of radial bearings.

radial bearing

Can you provide guidance on the selection and sizing of radial bearings for specific applications?

Yes, guidance can be provided on the selection and sizing of radial bearings for specific applications. Choosing the right radial bearings involves considering various factors such as load requirements, speed, operating conditions, space limitations, and environmental factors. Here’s a detailed explanation of the steps involved in selecting and sizing radial bearings for specific applications:

1. Determine the Application Requirements:

The first step is to understand the specific requirements of the application. This includes identifying the load type (radial, axial, or a combination), magnitude, and direction. Determine the desired rotational speed, as well as any special operating conditions such as temperature extremes, exposure to contaminants, or presence of moisture. Consider any space limitations or design constraints that may impact the bearing selection.

2. Calculate the Load:

Calculate the applied loads on the bearing to determine the required load capacity. Consider both static and dynamic loads. Static loads are the forces acting on the bearing when the equipment is at rest, while dynamic loads are the forces generated during operation. It’s important to accurately calculate these loads based on the application’s operating conditions and the forces exerted on the bearing.

3. Determine the Bearing Type:

Based on the application requirements and load calculations, select the appropriate bearing type. Radial bearings include deep groove ball bearings, cylindrical roller bearings, spherical roller bearings, tapered roller bearings, and needle roller bearings, among others. Each bearing type has specific design characteristics that make them suitable for different types of loads and operating conditions.

4. Consider Bearing Size and Design:

Once the bearing type is determined, consider the size and design parameters. These include the bore diameter, outer diameter, and width of the bearing. The bearing size should be selected to handle the calculated loads and ensure proper fit within the equipment. Consider factors such as available space, shaft diameter, and housing design to determine the appropriate bearing size.

5. Choose the Bearing Material:

Select the bearing material based on factors such as load requirements, operating conditions, and environmental considerations. Common bearing materials include steel, stainless steel, ceramic, and various alloys. Consider properties such as strength, corrosion resistance, temperature resistance, and lubrication compatibility when choosing the bearing material.

6. Determine Lubrication Requirements:

Consider the lubrication requirements of the bearing. Determine the lubrication type (grease or oil) based on the application’s speed, temperature, and operating conditions. Calculate the required lubrication quantity and frequency to ensure proper lubrication and minimize friction and wear. Consider factors such as re-lubrication intervals and the availability of automated lubrication systems if applicable.

7. Evaluate Sealing and Protection:

Assess the need for sealing and protection features based on the application’s operating environment. Seals or shields can help prevent contamination ingress, retain lubrication, and protect the bearing from moisture, dust, or other contaminants. Choose the appropriate sealing solution based on factors such as the level of protection required, operating speed, and temperature conditions.

8. Consult Bearing Manufacturer or Expert:

If you are uncertain about the selection and sizing process, it is advisable to consult with the bearing manufacturer or seek guidance from a bearing expert. They can provide valuable insights and recommendations based on their expertise and experience. Provide them with detailed information about the application requirements, load conditions, and operating parameters to receive accurate guidance.

9. Consider Cost and Availability:

Finally, consider the cost and availability of the selected radial bearings. Evaluate factors such as the initial cost, expected service life, maintenance requirements, and the availability of replacement bearings when making the final selection. Balancing performance requirements with cost considerations is important to ensure a cost-effective and reliable bearing solution.

By following these steps and considering the specific requirements of the application, you can make informed decisions regarding the selection and sizing of radial bearings. It is important to continually monitor the performance of the bearings during operation and make adjustments if necessary to ensure optimal performance and reliability.

China Standard Factory Radial Non-Aligning Ceiling Fan Hch Ball Bearings Price Motorcycle Parts Tapered Roller Bearing   bearing driverChina Standard Factory Radial Non-Aligning Ceiling Fan Hch Ball Bearings Price Motorcycle Parts Tapered Roller Bearing   bearing driver
editor by CX 2024-04-03