Select Page

China high quality Custom Chrome Steel Tensioner Pulley High Radial Load Auto Bearing deep groove ball bearing

Product Description

Custom Chrome Steel Tensioner Pulley High Radial Load Auto Bearing

Product Parameters

Product Name: Tensioner Bearing
Model Number: 4480-10571
Inner Diameter(mm) 30
Outer Diameter(mm) 57
Height(mm) 30
Material Chrome steel
Sealed type OPEN,RZ,2RS,4RS
Tolerance P0,P6,P5,P4,P2
Clearance C2,C0,C3,C4,C5
Noize level Z,Z1,Z2,Z3
Application Automotive Car
OEM Service Accept

Product Description

Tensioner Bearing:

-The bearings are adopted optimized structure designing so that can attain the traits of high temperature resistant, high speed resistant, long life, high speed rotation,impact resistant,high radial load,etc.

-Sealing structure and seals have the traits of high sealing ability, heat-resistant, abrasiveness and also can prevent the leakage of the grease, as they are helpful for lengthening the bearings’ using life.

Detailed Photos

More Products

Quality Control

Company Profile

ZHangZhouG SHENG YA BEARING TECHNOLOGY CO,LTD.was founded in 1996, covering an area of more than 10,000 square meters, with as sets of more than 50 million yuan, and more than 80 employees, including more than 10 professional and technical personnel with intermediate and senior professional titles. lt specializes in the production of automotive bearings motorcycle bearings, general machine bearings, precision machine tool bearings and home appliance bearings, with an annual production capacity of 10 million sets of small and medium-sized bearings.

Our company undertakes various types of non-standard special-shaped bearings, with a wide variety and fine workmanship. lt is located in Wen.ling, HangZhou City, an important industrial, commercial and tourist city in ZHangZhoug Province, with superior geographical location and convenient transportation.

FAQ

Q1:ls your company factory or Trade Company?
A:We have our own factory, our type is factory +trade.

Q2: Could you accept OEM and customize?
A:Yes, we can customize it for you according to the sample or drawing.

Q3: What is the MOQ of your company?
A:Our MOQ is normally 10pcs, anyway lower MOQ is also acceptable with a little higher cost, as the more you purchase the cheaper cost you could get.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year Warranty
Warranty: One Year Warranty
Type: Tensioner Bearing
Material: Chrome Steel
Tolerance: P6
Certification: ISO9001
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

radial bearing

What are the key advantages of using radial bearings in various industrial applications?

Radial bearings offer several key advantages that make them highly advantageous for various industrial applications. These advantages contribute to improved performance, reliability, and efficiency in machinery and equipment. Here are the key advantages of using radial bearings:

1. Load Support:

Radial bearings provide excellent load support, distributing and carrying radial loads in machinery and equipment. They are designed to handle the weight of rotating components, belts, pulleys, and other radial forces. By effectively supporting the loads, radial bearings minimize stress on the rotating components, ensuring smooth operation and preventing premature wear or damage.

2. Friction Reduction:

Radial bearings are designed to minimize friction between the rolling elements and raceways, resulting in reduced energy loss and improved efficiency. The rolling action of the elements reduces sliding friction, allowing machinery to operate with less resistance and lower power consumption. By reducing friction, radial bearings help optimize the performance of industrial applications, leading to increased productivity and energy savings.

3. Smooth Operation:

With their ability to facilitate smooth rotation, radial bearings contribute to smooth and precise operation in industrial applications. The rolling elements, such as balls or rollers, enable low-friction motion, ensuring that rotating shafts or assemblies move with minimal vibrations or jerks. This smooth operation enhances the overall performance, accuracy, and reliability of machinery and equipment.

4. Noise and Vibration Reduction:

Radial bearings play a crucial role in reducing noise and vibration in industrial applications. The rolling elements and bearing structure absorb and dampen vibrations generated during operation, minimizing their transmission to other components. By reducing noise and vibration, radial bearings contribute to a quieter and more comfortable working environment, as well as extending the lifespan of the equipment by reducing the risk of damage caused by excessive vibrations.

5. Versatility and Adaptability:

Radial bearings are highly versatile and adaptable to a wide range of industrial applications. They are available in various sizes, designs, and materials, allowing engineers to select the most suitable bearing for specific operating conditions and requirements. Radial bearings can withstand different speeds, temperature ranges, and environmental conditions, making them well-suited for diverse industrial applications across various industries.

6. Compact Design:

Radial bearings enable compact and space-efficient designs in industrial machinery and equipment. Their ability to support loads and facilitate smooth rotation allows engineers to design systems with smaller dimensions, reduced weight, and tighter tolerances. This compact design feature is particularly crucial in applications where space constraints or weight considerations are significant factors.

7. Longevity and Reliability:

Radial bearings are engineered to provide long service life and reliable performance in demanding industrial environments. They are designed with high-quality materials and advanced manufacturing techniques to withstand heavy loads, high speeds, and harsh operating conditions. Radial bearings undergo rigorous testing and quality control measures to ensure their durability and reliability, minimizing downtime and maintenance costs in industrial applications.

8. Cost-Effectiveness:

Radial bearings offer cost-effectiveness in industrial applications. Their ability to reduce friction, minimize power loss, and provide reliable performance contributes to improved energy efficiency and reduced operating costs. Additionally, the long service life and low maintenance requirements of radial bearings contribute to overall cost savings over the lifespan of the machinery or equipment.

In summary, the key advantages of using radial bearings in various industrial applications include load support, friction reduction, smooth operation, noise and vibration reduction, versatility, compact design, longevity and reliability, and cost-effectiveness. These advantages make radial bearings an essential component for enhancing performance, efficiency, and reliability in industrial machinery and equipment.

radial bearing

Are there specific types of radial bearings, and what are their unique characteristics?

Yes, there are several specific types of radial bearings, each with its unique characteristics and applications. These types of bearings are designed to accommodate different loads, operating conditions, and specific requirements. Here are some commonly used types of radial bearings along with their unique characteristics:

1. Deep Groove Ball Bearings:

Deep groove ball bearings are the most common type of radial bearings. They have deep raceway grooves that enable them to carry both radial and axial loads. Deep groove ball bearings are known for their versatility, high-speed capability, and relatively low cost. They are suitable for a wide range of applications, including electric motors, appliances, automotive components, and machinery.

2. Angular Contact Ball Bearings:

Angular contact ball bearings are designed to handle both radial and axial loads but primarily excel in supporting combined axial loads and moment loads. They have contact angles that allow them to carry higher thrust loads compared to deep groove ball bearings. Angular contact ball bearings are commonly used in applications such as machine tool spindles, automotive wheels, and pumps where precise axial and radial load support is required.

3. Cylindrical Roller Bearings:

Cylindrical roller bearings have high radial load-carrying capacity and are suitable for applications with heavy radial loads. They have cylindrical rollers as rolling elements and can accommodate axial displacement within the bearing. Cylindrical roller bearings are commonly used in industries such as construction equipment, gearboxes, and large motors.

4. Tapered Roller Bearings:

Tapered roller bearings are designed to handle both radial and axial loads. They have tapered raceways and rollers arranged in a way that allows the bearing to support higher axial loads in one direction. Tapered roller bearings are commonly used in automotive applications, including wheel bearings, transmissions, and differentials, as well as in industrial machinery such as mining equipment and machine tools.

5. Spherical Roller Bearings:

Spherical roller bearings can accommodate high radial loads and moderate axial loads. They have barrel-shaped rolling elements and self-aligning capabilities, allowing them to compensate for misalignment and shaft deflection. Spherical roller bearings are commonly used in heavy-duty applications such as mining, paper mills, and steel mills, where there are significant misalignment or heavy load conditions.

6. Needle Roller Bearings:

Needle roller bearings have cylindrical rollers that are much smaller in diameter compared to other radial bearings. They have a high length-to-diameter ratio, enabling them to handle high radial loads in a compact design. Needle roller bearings are commonly used in applications such as automotive transmissions, motorcycles, and industrial machinery.

7. Thrust Bearings:

Thrust bearings are designed to handle axial loads primarily and are often used in conjunction with radial bearings to support combined axial and radial loads. They come in various designs, including ball thrust bearings, cylindrical thrust bearings, and tapered roller thrust bearings. Thrust bearings are commonly used in automotive, aerospace, and industrial applications that require support for heavy axial loads.

8. Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and a spherical outer ring raceway, allowing them to accommodate misalignment between the shaft and housing. They can handle both radial and axial loads and are commonly used in applications where shaft misalignment is expected, such as conveyor systems, textile machinery, and agricultural equipment.

These are just a few examples of specific types of radial bearings, and there are many other variations and specialized designs available for specific applications. Each type of bearing has unique characteristics that make it suitable for particular operating conditions, load requirements, and performance expectations.

radial bearing

What is the role of cage design and materials in radial bearing performance and durability?

The cage design and materials used in radial bearings play a crucial role in their performance and durability. The cage, also known as the bearing retainer or separator, holds the rolling elements (such as balls or rollers) in position relative to each other. It serves multiple functions that directly impact the overall performance and longevity of the bearing. Here’s a detailed explanation of the role of cage design and materials in radial bearing performance and durability:

1. Positioning and Guidance:

The primary function of the cage is to position and guide the rolling elements within the bearing. It ensures proper spacing and alignment between the rolling elements, preventing them from coming into contact with each other. The cage helps maintain a uniform load distribution and prevents excessive friction or wear that can occur when the rolling elements are allowed to move freely. An effective cage design and material selection are essential for maintaining accurate positioning and guidance of the rolling elements, resulting in improved performance and durability of the bearing.

2. Friction and Heat Generation:

The cage design and materials significantly influence the friction and heat generation within the bearing. The cage should have low friction characteristics to minimize energy losses and prevent excessive heat buildup. A well-designed cage with appropriate materials can reduce contact friction between the rolling elements and the cage itself, resulting in lower operating temperatures and improved efficiency. Additionally, the cage should have good thermal conductivity to dissipate heat effectively, preventing thermal damage to the bearing components.

3. Lubricant Distribution:

The cage design plays a role in facilitating the distribution of lubricant within the bearing. It should allow for proper lubricant flow and distribution to ensure all bearing surfaces are adequately lubricated. Effective lubrication helps reduce friction, minimize wear, and prevent premature failure. The cage should have features or cutouts that allow lubricant to reach all contact points between the rolling elements and the raceways, ensuring optimal lubrication throughout the bearing’s service life.

4. Load Handling Capacity:

The cage design and materials contribute to the load handling capacity of the bearing. The cage should be rigid and strong enough to withstand the applied loads without deformation or failure. It should effectively distribute the load between the rolling elements, preventing excessive stress on individual components. The choice of cage material is crucial in determining its strength and load-carrying capability. Different materials, such as steel, brass, or synthetic polymers, offer varying levels of strength, rigidity, and resistance to wear and fatigue, allowing for optimal load handling capacity.

5. Noise and Vibration:

The cage design and materials can influence the generation of noise and vibration in the bearing. A well-designed cage with appropriate materials can help dampen vibrations and reduce noise levels during operation. The cage should have sufficient stiffness and damping properties to absorb and dissipate vibrations, minimizing their transmission to other parts of the machinery or equipment. This not only improves the overall performance and efficiency of the bearing but also enhances the comfort of operators and reduces the risk of damage caused by excessive vibrations.

6. Corrosion and Contamination Resistance:

The choice of cage material is crucial in determining its resistance to corrosion and contamination. Bearings operating in harsh environments or exposed to moisture, chemicals, or abrasive particles require cages made from corrosion-resistant materials. Common materials used for cage construction, such as stainless steel or synthetic polymers, offer excellent resistance to corrosion and contamination, enhancing the durability and reliability of the bearing in challenging operating conditions.

7. Maintenance and Service Life:

The cage design and materials can affect the maintenance requirements and service life of the bearing. A well-designed cage with high-quality materials can contribute to extended bearing life by reducing wear, preventing premature failure, and minimizing the need for frequent maintenance. Bearings with superior cage materials and designs often exhibit improved durability and longer service intervals, resulting in reduced downtime and lower maintenance costs.

When selecting a radial bearing, it is essential to consider the specific application requirements, operating conditions, and the type of loads it will be subjected to. The cage design and materials should be chosen based on these factors to ensure optimal performance, durability, and reliability of the bearing.

China high quality Custom Chrome Steel Tensioner Pulley High Radial Load Auto Bearing   deep groove ball bearingChina high quality Custom Chrome Steel Tensioner Pulley High Radial Load Auto Bearing   deep groove ball bearing
editor by CX 2024-04-08