Select Page

China manufacturer China Wholesale /Spherical Plain Bearing /Radial Joint End Bearing/Sliding Bearing bearing assembly

Product Description

                                                      Why Choose Us
——————————————————————————————————————-

1.FREE SAMPLES: 
Contact us by email or trade manager, we will send the free sampls according to your request.
2.World Class Bearing:

We provide our customers with all type of indigenous bearing with world class quality. 
3. OEM or Non Stand Bearings:

Any requirement for Non standard bearings is Easily Fulfilled by us due to its vast knowledge and links in the industry.  
4. Genuine products With Excellent Quality: 

Company has always proved the 100% quality products it provides with genuine intent. 
5.After Sales Service and technical Assistance: 

Company provides after sales service and technical assistance as per the customers requirement and needs. 
6. Quick Delivery:

The company provides just-in-time delivery with its streamlined supply chain. 
7. Cost Saving:

We provide long-life, shock-resistant and high reliability bearings with excellent quality and better performance.

8.Attending customer queries promptly: 

We believe that if customer are satisfied then it proves our worth well. Customers are always given quick support.

                                                    Products Description
——————————————————————————————————————-
                                                                                                     UKL Rod End Bearing

Rod ends consist of an eye-shaped head with integral shank that forms a housing for a spherical plain bearing. They are used primarily on the ends of hydraulic or pneumatic pistons to join the cylinder to an associated component. 

UKL supplies a wide assortment of standard rod ends with different thread and shank designs at the rod end housing, making them easy to install. The various sliding contact surface combinations of the bearings make the rod ends suitable for the operating conditions of many applications.

Features:
1. Bearings with a stretching rod, stretching with right or left-hand male thread.
2. To plate zinc on the surface of rod body, the housing with a lubricartion hole or a grease nipple.
3. Rod ends permissible operating temperature, are available on – 30 °C to + 80 °C temperature range of use, and keep the right to bear ability.
Application:
Rod end bearing are widely used in hydraulic engineering, metal forming machine tools, construction machinery, automation equipment, automotive shock absorbers, irrigation machinery and other industries.

                                                       Product Display
——————————————————————————————————————-

                                                                                                Male Therad Rod End Bearing
                                                                                                Female Thread Rod End Bearing

                                                        Factory&Equipment
——————————————————————————————————————-

                                               Inspection&Packaging
——————————————————————————————————————-

                                                      Application Scenario
——————————————————————————————————————-
                                                          Certifications
——————————————————————————————————————-
                                                                 FAQ
——————————————————————————————————————-

1.Q:What the MOQ of your company?
A:MOQ is 1pc.
2.Q:Could you accept OEM and customize?
A:YES,we can customize for you according to sample or drawing.
3.Q:Could you supply sample for free?
A:Yes,we can supply sample for free,do you mind to buy her a ticket?
4.Q:IS you company factory or Trade Company?
A:We have our own factory ;our type is factory +trade.
5.Q:Could you tell me the material of your bearing?
A:We have chrome steel,carbon steel and staninless steel,ceramic and plastic material.
6.Q:Could you offer door to door service?
A:Yes,by express(DHL,FEDEX,TNT,EMS,4-10 days to your city.)
7.Q:Coould you tell me the payment term of your company can accept?
A:T/T.L/C,Western Union,PayPal
8.Q:Could you tell me the delivery time of your doods?
A:If stock,in 7days or base on your order quantity. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Rolling Element: Single Row
Structure: Rod End
Material: Bearing Steel
Load Direction: Radial Spherical Plain Bearing
Add Lubricant: Non Self-lubricating
Outer Structure: Whole Outer Ring
Samples:
US$ 0.01/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

radial bearing

How do radial bearings differ from other types of bearings, such as thrust bearings?

Radial bearings and thrust bearings are two distinct types of bearings, each designed to handle different types of loads and forces. Here is a detailed explanation of how radial bearings differ from other types of bearings, particularly thrust bearings:

1. Load Orientation:

The primary difference between radial bearings and thrust bearings lies in the orientation of the loads they can handle. Radial bearings are primarily designed to support radial loads, which are forces that act perpendicular to the shaft’s axis. They are specifically optimized to distribute and support these radial loads, such as the weight of rotating shafts or components, belt tension, or pulley forces.

On the other hand, thrust bearings are designed to handle axial (thrust) loads, which are forces that act parallel to the shaft’s axis. These loads can include pushing or pulling forces, as well as the weight of components or structures that exert an axial force. Thrust bearings are specifically engineered to accommodate and transmit these axial loads while minimizing friction and ensuring smooth operation.

2. Bearing Design:

Radial bearings and thrust bearings have different design features to suit their respective load orientations. Radial bearings typically have an inner ring mounted on the rotating shaft and an outer ring that remains stationary. The rolling elements, such as balls or rollers, are positioned between the inner and outer rings and distribute the radial load. The design of radial bearings focuses on providing optimal support and distributing the load evenly across the rolling elements.

Thrust bearings, on the other hand, have different design configurations to handle axial loads. They can be categorized into several types, including ball thrust bearings, roller thrust bearings, tapered roller thrust bearings, and spherical roller thrust bearings. These designs often incorporate specialized features such as raceway profiles, cage structures, and rolling element arrangements to handle axial loads while minimizing friction and accommodating misalignments.

3. Load Capacity and Direction:

Radial bearings and thrust bearings have different load capacities and capabilities in terms of load direction. Radial bearings are optimized to handle primarily radial loads, and their load capacity is typically specified for radial forces. While they can withstand limited axial loads, their axial load capacity is lower compared to dedicated thrust bearings. Radial bearings are not designed to handle significant axial forces and may experience premature wear or failure if subjected to excessive axial loads.

Thrust bearings, on the other hand, are specifically engineered to handle axial loads. They have higher axial load capacities compared to radial bearings and are designed to transmit and support forces acting parallel to the shaft’s axis. Thrust bearings are capable of withstanding substantial axial loads without sacrificing their performance or longevity.

4. Application and Usage:

Due to their load orientation and design characteristics, radial bearings and thrust bearings are used in different applications. Radial bearings are commonly employed in machinery and equipment where supporting radial loads is the primary requirement. They are widely used in applications such as electric motors, pumps, fans, conveyors, automotive components, and industrial machinery. Radial bearings are versatile and can handle various operating conditions, speeds, and loads, making them suitable for a wide range of mechanical systems.

Thrust bearings, on the other hand, are specifically used in applications where axial loads need to be supported and transmitted. They find application in machinery and equipment such as thrust ball screws, automotive transmissions, steering systems, and heavy machinery that requires precise axial positioning. Thrust bearings are crucial for maintaining the axial integrity and stability of components or structures subjected to thrust forces.

5. Combination Bearings:

In some cases, there are bearings that can handle both radial and axial loads, commonly known as combination bearings or angular contact bearings. These bearings are designed with a specific contact angle between the rolling elements and raceways, allowing them to simultaneously support radial and axial loads. Combination bearings are often used in applications where both types of loads are present, such as machine tool spindles or certain types of gearboxes. However, it’s important to note that combination bearings may have limitations in terms of load capacities and the ratio of radial to axial loads they can handle.

In summary, the primary differences between radial bearings and other types of bearings, such as thrust bearings, lie in their load orientations, design features, load capacities, and applications. Radial bearings are optimized for supporting radial loads, while thrust bearings are specifically designed to handle axial loads. Understanding these differences is crucial for selecting the appropriate bearing type for a specific mechanical application.

radial bearing

Are there specific types of radial bearings, and what are their unique characteristics?

Yes, there are several specific types of radial bearings, each with its unique characteristics and applications. These types of bearings are designed to accommodate different loads, operating conditions, and specific requirements. Here are some commonly used types of radial bearings along with their unique characteristics:

1. Deep Groove Ball Bearings:

Deep groove ball bearings are the most common type of radial bearings. They have deep raceway grooves that enable them to carry both radial and axial loads. Deep groove ball bearings are known for their versatility, high-speed capability, and relatively low cost. They are suitable for a wide range of applications, including electric motors, appliances, automotive components, and machinery.

2. Angular Contact Ball Bearings:

Angular contact ball bearings are designed to handle both radial and axial loads but primarily excel in supporting combined axial loads and moment loads. They have contact angles that allow them to carry higher thrust loads compared to deep groove ball bearings. Angular contact ball bearings are commonly used in applications such as machine tool spindles, automotive wheels, and pumps where precise axial and radial load support is required.

3. Cylindrical Roller Bearings:

Cylindrical roller bearings have high radial load-carrying capacity and are suitable for applications with heavy radial loads. They have cylindrical rollers as rolling elements and can accommodate axial displacement within the bearing. Cylindrical roller bearings are commonly used in industries such as construction equipment, gearboxes, and large motors.

4. Tapered Roller Bearings:

Tapered roller bearings are designed to handle both radial and axial loads. They have tapered raceways and rollers arranged in a way that allows the bearing to support higher axial loads in one direction. Tapered roller bearings are commonly used in automotive applications, including wheel bearings, transmissions, and differentials, as well as in industrial machinery such as mining equipment and machine tools.

5. Spherical Roller Bearings:

Spherical roller bearings can accommodate high radial loads and moderate axial loads. They have barrel-shaped rolling elements and self-aligning capabilities, allowing them to compensate for misalignment and shaft deflection. Spherical roller bearings are commonly used in heavy-duty applications such as mining, paper mills, and steel mills, where there are significant misalignment or heavy load conditions.

6. Needle Roller Bearings:

Needle roller bearings have cylindrical rollers that are much smaller in diameter compared to other radial bearings. They have a high length-to-diameter ratio, enabling them to handle high radial loads in a compact design. Needle roller bearings are commonly used in applications such as automotive transmissions, motorcycles, and industrial machinery.

7. Thrust Bearings:

Thrust bearings are designed to handle axial loads primarily and are often used in conjunction with radial bearings to support combined axial and radial loads. They come in various designs, including ball thrust bearings, cylindrical thrust bearings, and tapered roller thrust bearings. Thrust bearings are commonly used in automotive, aerospace, and industrial applications that require support for heavy axial loads.

8. Self-Aligning Ball Bearings:

Self-aligning ball bearings have two rows of balls and a spherical outer ring raceway, allowing them to accommodate misalignment between the shaft and housing. They can handle both radial and axial loads and are commonly used in applications where shaft misalignment is expected, such as conveyor systems, textile machinery, and agricultural equipment.

These are just a few examples of specific types of radial bearings, and there are many other variations and specialized designs available for specific applications. Each type of bearing has unique characteristics that make it suitable for particular operating conditions, load requirements, and performance expectations.

radial bearing

How do innovations and advancements in radial bearing technology impact their use?

Innovations and advancements in radial bearing technology have a significant impact on their use in various industries and applications. These advancements drive improvements in performance, reliability, efficiency, and versatility of radial bearings. Here’s a detailed explanation of how innovations and advancements in radial bearing technology impact their use:

1. Enhanced Performance:

Advancements in radial bearing technology lead to improved performance characteristics. This includes increased load capacities, higher rotational speeds, reduced friction, and enhanced stiffness. These improvements allow radial bearings to handle more demanding loads and operate in high-speed applications more effectively. Enhanced performance enables the use of radial bearings in a wider range of industrial applications, contributing to increased efficiency and productivity.

2. Extended Service Life:

Innovations in bearing materials, lubrication systems, and surface treatments result in extended service life for radial bearings. New materials with superior wear resistance and corrosion resistance properties allow bearings to withstand harsh environments and reduce the risk of premature failure. Advanced lubrication techniques, such as self-lubricating or solid lubricant coatings, minimize friction and wear, further prolonging the bearing’s service life. The ability of radial bearings to operate reliably for longer periods translates into reduced maintenance requirements and downtime.

3. Improved Reliability:

Advancements in radial bearing technology enhance their overall reliability. New designs and manufacturing techniques ensure consistent quality, dimensional accuracy, and precise tolerances, resulting in reliable performance under varying operating conditions. The use of advanced simulation and testing methods enables better prediction and understanding of bearing behavior, allowing for optimized designs and improved reliability. Enhanced reliability reduces the risk of unexpected bearing failures, which can lead to costly downtime and equipment damage.

4. Higher Efficiency:

Innovations in radial bearing technology contribute to higher efficiency in mechanical systems. Reduced friction and improved lubrication techniques minimize energy losses within the bearing, resulting in improved overall system efficiency. Bearings with lower friction help reduce power consumption and improve energy utilization, making them particularly beneficial in applications where energy efficiency is a priority, such as electric motors or automotive drivetrains.

5. Miniaturization and Compact Designs:

Advancements in radial bearing technology enable the development of smaller and more compact bearing designs. This is particularly important in industries where space constraints are a significant consideration. Miniaturized bearings allow for the design of smaller and lighter equipment without compromising performance. They find applications in industries such as aerospace, robotics, medical devices, and electronics, where size and weight reduction are crucial.

6. Specialized Applications:

Innovations in radial bearing technology have led to the development of specialized bearings tailored for specific applications. For example, advancements in bearing materials and designs have resulted in bearings capable of operating in extreme temperature or high-vibration environments. Specialized bearings designed for specific industries, such as the food and beverage or pharmaceutical sectors, meet stringent regulatory requirements regarding hygiene and contamination prevention. These specialized bearings expand the range of applications where radial bearings can be used effectively.

7. Integration with Sensor Technologies:

Advancements in sensor technologies have facilitated the integration of condition monitoring and predictive maintenance capabilities into radial bearings. Bearings equipped with sensors can provide real-time data on factors such as temperature, vibration, and load conditions. This allows for proactive maintenance and early detection of potential issues, enabling timely interventions to prevent unplanned downtime and optimize equipment performance.

8. Cost Optimization:

While innovations and advancements in radial bearing technology often involve initial investments in research and development, they can lead to long-term cost savings. Improved performance, extended service life, and reduced maintenance requirements result in lower operational costs over the bearing’s lifetime. Additionally, advancements in manufacturing processes and economies of scale may contribute to more affordable bearing options, making advanced radial bearing technology accessible to a wider range of applications.

By continually pushing the boundaries of radial bearing technology, innovations and advancements have a profound impact on their use across various industries. Enhanced performance, extended service life, improved reliability, higher efficiency, miniaturization, specialized applications, integration with sensor technologies, and cost optimization are some of the key benefits that result from these advancements. As a result, engineers and designers have access to a wider range of bearing options to meet the evolving needs of modern industrial applications.

China manufacturer China Wholesale /Spherical Plain Bearing /Radial Joint End Bearing/Sliding Bearing   bearing assemblyChina manufacturer China Wholesale /Spherical Plain Bearing /Radial Joint End Bearing/Sliding Bearing   bearing assembly
editor by CX 2024-04-03