Select Page

China Custom High Radial Load CZPT Car Parts Impact Resistant Auto Tensioner Bearing bearing and race

Product Description

High Radial Load CZPT Car Parts Impact Resistant Auto Tensioner Bearing

Product Parameters

Product Name: Tensioner Bearing
Model Number: 7114-10
Inner Diameter(mm) 10.3
Outer Diameter(mm) 37
Height(mm) 24
Material Chrome steel
Sealed type OPEN,RZ,2RS,4RS
Tolerance P0,P6,P5,P4,P2
Clearance C2,C0,C3,C4,C5
Noize level Z,Z1,Z2,Z3
Application Automotive Car
OEM Service Accept

Product Description

Tensioner Bearing:

-The bearings are adopted optimized structure designing so that can attain the traits of high temperature resistant, high speed resistant, long life, high speed rotation,impact resistant,high radial load,etc.

-Sealing structure and seals have the traits of high sealing ability, heat-resistant, abrasiveness and also can prevent the leakage of the grease, as they are helpful for lengthening the bearings’ using life.

Detailed Photos

More Products

Quality Control

Company Profile

ZHangZhouG SHENG YA BEARING TECHNOLOGY CO,LTD.was founded in 1996, covering an area of more than 10,000 square meters, with as sets of more than 50 million yuan, and more than 80 employees, including more than 10 professional and technical personnel with intermediate and senior professional titles. lt specializes in the production of automotive bearings motorcycle bearings, general machine bearings, precision machine tool bearings and home appliance bearings, with an annual production capacity of 10 million sets of small and medium-sized bearings.

Our company undertakes various types of non-standard special-shaped bearings, with a wide variety and fine workmanship. lt is located in Wen.ling, HangZhou City, an important industrial, commercial and tourist city in ZHangZhoug Province, with superior geographical location and convenient transportation.

FAQ

Q1:ls your company factory or Trade Company?
A:We have our own factory, our type is factory +trade.

Q2: Could you accept OEM and customize?
A:Yes, we can customize it for you according to the sample or drawing.

Q3: What is the MOQ of your company?
A:Our MOQ is normally 10pcs, anyway lower MOQ is also acceptable with a little higher cost, as the more you purchase the cheaper cost you could get.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year Warranty
Warranty: One Year Warranty
Type: Tensioner Bearing
Material: Chrome Steel
Tolerance: P6
Certification: ISO9001
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

radial bearing

What are radial bearings, and how are they used in mechanical applications?

Radial bearings are a type of rolling element bearing used in mechanical applications to support radial loads. They are designed to primarily handle forces that are perpendicular to the shaft’s axis, known as radial loads, although they can also withstand limited axial (thrust) loads. Radial bearings are widely used in various mechanical systems where rotational motion is involved. Here is a detailed explanation of radial bearings and their applications:

1. Structure and Components:

Radial bearings consist of several key components. The inner ring is mounted on the rotating shaft, while the outer ring remains stationary. Between the inner and outer rings, there are rolling elements, such as steel balls or cylindrical rollers. These rolling elements are evenly spaced and held in position by a cage or retainer, which prevents their contact and ensures smooth rolling motion. The inner and outer rings, along with the rolling elements and cage, work together to support and distribute the load applied to the bearing.

2. Radial Load Support:

The primary function of radial bearings is to support radial loads. Radial loads are forces that act perpendicular to the shaft’s axis, such as the weight of a rotating shaft or the force exerted by a belt or pulley system. Radial bearings are designed to distribute these loads evenly across the rolling elements, minimizing friction and allowing smooth rotation. The rolling elements roll between the inner and outer rings, absorbing and transmitting the radial load to the stationary outer ring, which then transfers the load to the surrounding structure.

3. Axial Load Capacity:

While radial bearings are primarily designed to support radial loads, they can also withstand limited axial (thrust) loads. Axial loads are forces that act parallel to the shaft’s axis, such as the force generated by a thrusting or pushing motion. The axial load capacity of radial bearings is lower compared to dedicated thrust bearings, but they can handle moderate axial loads that may be present in certain applications. It is important to consider the axial load capacity of the specific radial bearing when selecting it for a mechanical application.

4. Versatility and Wide Range of Applications:

Radial bearings are versatile and find applications in a wide range of mechanical systems. They are commonly used in machinery and equipment such as electric motors, pumps, fans, conveyors, automotive components, and industrial machinery. Radial bearings are crucial for providing support and facilitating smooth rotation in these applications. They are able to handle various operating conditions, speeds, and loads, making them suitable for both light-duty and heavy-duty applications.

5. Different Types of Radial Bearings:

There are different types of radial bearings available to suit different application requirements. Some common types include:

– Deep Groove Ball Bearings: These are the most common type of radial bearings, with deep raceway grooves to accommodate high radial and axial loads.

– Angular Contact Ball Bearings: These bearings have raceways designed to handle both radial and axial loads, offering high-speed capabilities and precise axial positioning.

– Cylindrical Roller Bearings: These bearings have cylindrical rollers instead of balls and can handle higher radial loads compared to ball bearings.

– Tapered Roller Bearings: These bearings have tapered raceways, enabling them to handle both radial and axial loads, particularly in applications with combined loads.

– Spherical Roller Bearings: These bearings have barrel-shaped rollers and can accommodate misalignment and heavy radial loads in applications with high shock and vibration.

6. Lubrication and Maintenance:

Proper lubrication is crucial for the performance and longevity of radial bearings. Lubricants reduce friction, dissipate heat, and prevent metal-to-metal contact between the rolling elements and raceways. Lubrication methods can vary depending on the specific bearing design and application. Regular maintenance, including lubricant inspection and replenishment, is important to ensure optimal bearing operation and prevent premature wear or failure.

In summary, radial bearings are rolling element bearings used in mechanical applications to support radial loads. They consist of inner and outer rings, rolling elements, and a cage. Radial bearings primarily handle forces perpendicular to the shaft’s axis and distribute the load evenly across the rolling elements. They are versatile and find applications in various mechanical systems, offering support and facilitating smooth rotation. Proper lubrication and maintenance are essential for their reliable operation and longevity.

radial bearing

What are the potential challenges or limitations of using radial bearings in specific applications?

Radial bearings, like any other mechanical component, have certain challenges and limitations that should be considered when selecting and using them in specific applications. Understanding these potential limitations is crucial for ensuring the optimal performance and reliability of radial bearings. Here’s a detailed explanation of the potential challenges or limitations of using radial bearings:

1. Load Capacity:

Radial bearings have a specific load capacity, which is determined by their design, size, and material. Exceeding the load capacity can lead to premature wear, excessive heat generation, and ultimately bearing failure. It is important to accurately calculate and apply the appropriate load conditions to ensure that the radial bearing can handle the expected loads in the specific application. In high-load applications, alternative bearing types, such as thrust bearings or angular contact bearings, may be more suitable.

2. Speed Limitations:

Radial bearings have speed limitations that are determined by factors such as bearing size, design, lubrication, and operating conditions. Operating at speeds beyond the recommended limits can result in increased friction, heat generation, and potential bearing failure. It is important to consider the rotational speed requirements of the application and select bearings that can operate within the specified speed range. In high-speed applications, specialized high-speed bearings or alternative bearing types may be necessary.

3. Temperature Constraints:

The operating temperature range of radial bearings should be taken into account when selecting them for specific applications. Excessive temperatures can cause changes in bearing dimensions, material degradation, lubrication breakdown, and reduced bearing life. High-temperature applications may require bearings with heat-resistant materials or additional cooling measures, while low-temperature applications may require special lubricants that can withstand cold environments.

4. Environmental Factors:

Radial bearings can be affected by environmental factors such as moisture, dust, chemicals, and corrosive substances. These factors can accelerate wear, corrosion, and contamination, leading to reduced bearing performance and premature failure. It is important to assess the operating environment and select appropriate sealing solutions, protective coatings, or bearing materials that can withstand the specific environmental conditions.

5. Misalignment:

Radial bearings require proper alignment to function optimally. Misalignment can result in increased stresses, uneven load distribution, and accelerated wear. It is crucial to ensure accurate alignment during installation and consider the potential misalignment factors in the application design. In some cases, self-aligning bearings or specialized bearing arrangements may be necessary to accommodate misalignment.

6. Maintenance Requirements:

Radial bearings require regular maintenance to ensure their optimal performance and longevity. This includes proper lubrication, periodic inspections, and timely replacement of worn or damaged components. In applications where maintenance is challenging or access is limited, alternative bearing types or maintenance-free bearing solutions may be more suitable.

7. Cost Considerations:

The cost of radial bearings can vary depending on factors such as bearing type, size, quality, and manufacturer. In some cases, specialized bearings designed for specific applications may be more expensive. It is important to balance the performance requirements with the available budget to select bearings that provide the desired level of performance and reliability at a reasonable cost.

8. Application-Specific Considerations:

Each application may have unique requirements, challenges, or limitations that should be taken into account when selecting radial bearings. Factors such as vibration, shock loads, space constraints, noise tolerance, and regulatory compliance may influence the choice of bearings. It is important to consider these application-specific factors and consult with bearing manufacturers or industry experts to ensure the selected bearings can meet the specific requirements.

By considering these potential challenges and limitations, it is possible to make informed decisions regarding the selection, implementation, and maintenance of radial bearings in specific applications. Proper assessment of load capacity, speed limitations, temperature constraints, environmental factors, alignment, maintenance requirements, cost considerations, and application-specific factors can help optimize the performance and reliability of radial bearings in various industrial and mechanical systems.

radial bearing

What are the eco-friendly or sustainable aspects of radial bearing materials?

Radial bearing materials play a crucial role in determining the environmental impact and sustainability of the bearings. Several aspects of radial bearing materials contribute to their eco-friendliness and sustainability. Here’s a detailed explanation of these aspects:

1. Material Selection:

The choice of bearing material can have a significant impact on its environmental footprint. Opting for materials that are eco-friendly and sustainable is important. Some materials commonly used in radial bearings, such as steel, have high recycling rates and can be recycled at the end of their life cycle. This reduces the demand for new raw materials and minimizes waste generation. Additionally, selecting materials that are abundant and easily sourced further enhances the sustainability of radial bearings.

2. Recyclability:

Radial bearings made from recyclable materials are considered environmentally friendly. When bearings reach the end of their useful life, they can be recycled, and the materials can be repurposed for manufacturing new bearings or other products. Recycling reduces the need for virgin materials extraction, conserves resources, and reduces energy consumption and greenhouse gas emissions associated with the production of new materials. Choosing bearing materials that are easily recyclable promotes a circular economy and minimizes waste generation.

3. Reduced Environmental Impact:

Some radial bearing materials have a lower environmental impact compared to others. For example, selecting materials with lower carbon footprints or materials that require less energy-intensive manufacturing processes can contribute to sustainability. Materials like ceramic or composite bearings often have lower energy requirements during production compared to traditional steel bearings. By reducing energy consumption and associated emissions, these materials help mitigate the environmental impact of bearing manufacturing.

4. Lubrication and Friction Reduction:

The choice of bearing material can also influence the lubrication requirements and friction levels. Bearings made from materials with inherent self-lubricating properties or low friction coefficients can reduce the need for external lubrication or the use of lubricants with potential environmental impacts. Self-lubricating materials such as polymers or certain composites can minimize the use of oil or grease lubricants, which can be environmentally harmful if not managed properly. Reduced lubrication requirements contribute to sustainable bearing operation by minimizing lubricant consumption and potential contamination risks.

5. Extended Service Life:

Using durable and long-lasting bearing materials helps extend the service life of the bearings. Bearings that require less frequent replacement or maintenance have a positive impact on sustainability. By reducing the frequency of bearing replacements, less waste is generated, and the consumption of raw materials is minimized. Additionally, extending the service life of bearings reduces the need for energy-intensive manufacturing processes associated with frequent replacements, further reducing the environmental impact.

6. Energy Efficiency:

Radial bearing materials can contribute to energy efficiency in mechanical systems. Materials with low friction coefficients and high wear resistance properties help minimize energy losses due to friction and improve overall system efficiency. By reducing energy consumption, sustainable bearing materials support energy conservation efforts and contribute to the reduction of greenhouse gas emissions associated with energy production.

7. Compliance with Environmental Regulations:

Eco-friendly and sustainable radial bearing materials often comply with environmental regulations and standards. These materials are designed to meet specific requirements regarding the use of hazardous substances, waste generation, and disposal. Compliance with regulations such as the Restriction of Hazardous Substances (RoHS) directive ensures that bearing materials are free from harmful substances, protecting human health and the environment.

8. Life Cycle Assessment:

A comprehensive life cycle assessment (LCA) of bearing materials can provide insights into their environmental impact. LCA evaluates the environmental effects associated with a product throughout its entire life cycle, from raw material extraction to end-of-life disposal. Conducting LCAs helps identify areas of improvement, optimize manufacturing processes, and select materials with lower environmental impacts.

By considering these eco-friendly and sustainable aspects of radial bearing materials, manufacturers and end-users can make informed choices that minimize their environmental footprint. Sustainable bearing materials contribute to resource conservation, waste reduction, energy efficiency, and compliance with environmental regulations, fostering a more sustainable and environmentally responsible industrial ecosystem.

China Custom High Radial Load CZPT Car Parts Impact Resistant Auto Tensioner Bearing   bearing and raceChina Custom High Radial Load CZPT Car Parts Impact Resistant Auto Tensioner Bearing   bearing and race
editor by CX 2024-04-09